
Real Web Development
yeah, for real.

1

who am i?

• i’m still cyle

• i’m a systems developer and architect

• every day i’m developin’

• i like this kind of stuff

2

real?

• kind of ranty, sorry

• web development is more than just...

• coding

• and/or designing

3

real development

• is about making technologies work together

• it’s language agnostic

4

web design

• is about making pages look pretty

• and that’s cool

5

web programming

• is about making pages actually work

• and that’s needed, sure

6

web dev

• is doing both.

• usually not as well, though.

• but hey, at least it works!

• the one-person band!

7

pieces of development

• server building (i.e. LAMP)

• prototyping

• building small pieces before the whole

• designing / wireframing

• coding / debugging

8

on a team

• you have an admin (does the building)

• you have a designer (makes the pretty)

• you have a coder (makes it work)

• probably two of each, at least

9

the one-person band

• pros

• can get things done faster

• has a complete view of the whole
process

• doesn’t have to have meetings

• cheaper than a team

10

the one-person band

• cons

• can write bad code easily

• is a single point of failure

• doesn’t do any one piece as well as a
dedicated person

11

anyway

• all the cool kids are developers

• so let’s get into being a developer

12

pieces of “the stack”

• a server layer (Linux)

• a web service layer (Apache, lighttpd)

• sometimes a cache layer (memcached)

• an application layer (PHP, Rails, Python)

• a database layer (MySQL, MongoDB, Redis)

13

LAMP

• is a stack

• you’ve probably heard of it

• Linux, Apache, MySQL, PHP

14

1. user types in whatever.com

2. Apache gets the request, knows that the index
file for that domain is index.php

3. Apache opens a PHP instance to parse the file

4. PHP interprets the script, then returns its
output to Apache

1. ...maybe it gets data from MySQL

5. Apache returns the output to the user’s
browser as HTML/CSS/whatever

the LAMP stack in action

15

• if you can be in control of every step of that
process...

• you’re a real web developer

16

• runs the show

• should’ve been here for the earlier session

• all you have to do is know how to edit a lot
of configuration files

• and how to start/restart/reload services

Linux

17

• keeps its configuration files most often within...

• /etc/apache2

• any changes, you need to reload apache

• service apache2 reload

• (however, a full restart or force-reload makes sure
everyone sees the changes)

Apache

18

PHP
• is a procedural, interpreted language

• procedural means it follows the script one line at a time

• interpreted means it parses that script every time it’s asked

• line 5 won’t happen until line 4 is done

• and it’ll do all the lines of a script each time it’s requested

19

MySQL
• it’s a database! it holds data.

• in databases, tables, rows, columns

• accessed using SQL, or Structured Query Language

• which is its own language for accessing data, commonly
used alongside other languages (like PHP)

20

please notice
• I didn’t mention HTML and CSS and Javascript

• because you should already know those, really

• and they are client-side things, not server-side things

• HTML/CSS/Javascript is like basic algebra, you’re learning
trigonometry right now

• if you don’t know them like the back of your hand, you
should learn them like the back of your hand

21

inside “development”

• when editing a PHP file, you probably see...

• PHP code

• SQL queries

• HTML / CSS / Javascript

• it’s messy, but that’s how you start

22

<!doctype html>
<html>
<head>
<title>oh dear</title>
<script type=”text/javascript”>
alert(‘welp.’);
</script>
<style type=”text/css”>
body { color: red; background-color: black; }
</style>
</head>
<body>
<?php

$mysql = new mysqli(‘localhost’, ‘username’, ‘password’, ‘some_db’);
$get_something = $mysqli->query(‘SELECT title FROM site_stuff WHERE id=1’);
if ($get_something->num_rows > 0) {

$info = $get_something->fetch_assoc();
echo ‘<h1>’.$info[‘title’].’</h1>’;

}

?>
</body>
</html>

HTML, CSS, Javascript, PHP, and SQL

23

Basic PHP Primer

• because Apache works pretty easily
out of the box, we’ll get to that later

• and MySQL needs to be built
according to the app’s needs, so we’ll
get to that later

24

what you need

• a plain text editor

• somewhere that’ll parse the PHP files

• luckily we have both!

25

running stuff

• you script PHP in a plain text file

• on these machines, use Kod or TextEdit

• then upload it to a server via FTP/SFTP

• using FileZilla, for our purposes

• then visit that page in a browser

26

so open FileZilla...

Host: sftp://learn.dev.emerson.edu
Username: the one we set up

Password: learnit

27

Your Stuff Over Here Server Stuff Over Here

28

• things in your www folder show up here

• http://learn.dev.emerson.edu/~user/

• so an what.php shows up at

• http://learn.dev.emerson.edu/~user/what.php

29

http://learn.dev.emerson.edu/~user/
http://learn.dev.emerson.edu/~user/
http://learn.dev.emerson.edu/~user/what.php
http://learn.dev.emerson.edu/~user/what.php

• that’s you uploading a file via SFTP

• going to a URL in your browser

• Apache parsing the request

• PHP interpreting the file

• and Apache returning your browser the
result

30

ok

• now open that text editor...

31

hello_world.php

<?php

echo 'HELLO WORLD!';

?>

32

REMEMBER
a computer is reading what you’re writing.

this is important.

33

<?php ... ?>

this tells the computer that
everything in between is PHP!

34

use a semicolon at the
end of every line.

or your script won’t work

35

expressions

36

• an expression returns something!

• 4 + 10

• that’s an expression, it returns 14

• the number (a type of data), 4

• the addition operation (a function), +

• the number (more data), 10

37

data types, variables

38

• numbers

• integers, i.e. whole numbers, 2928

• floating-points, i.e. decimals, 3.14

• strings

• text between ‘single quotes’

• or “double quotes”

39

• booleans, true or false

• arrays of things, i.e.

• array(“apple”, “banana”, “grape”);

40

• variables to store these!

<?php

$what = “hello!”;
echo $what;

?>

41

• the $ before a word denotes a variable

• the = sign turns the result of an expression
into a variable!

• so $variable = 4 + 10;

• $variable will be 14

42

<?php

$fruits = array(“apple”, “banana”);

print_r($fruits);

?>

a variable, storing an array of strings

43

• arrays hold a lot of data, potentially

• you access the info inside it with indexes

• $fruit[0] is the first string in the list, so “apple”

• $fruit[1] is the second, so “banana”

• the number inside [] is the index, starts at 0

• you could use count() to find out how many
elements are in an array

44

• print_r() and count() are functions built into PHP

• like an expression, functions return something
(usually)

• in this case, print_r() takes whatever you give it
and just prints out what’s inside

• it’ll show the contents of the $fruit array

• count() takes an array and returns the number of
elements inside

45

• there are a lot of functions

• http://gotapi.com/php/

• and you can make your own!

46

http://gotapi.com/php/
http://gotapi.com/php/

• learning to read documentation is the second
greatest skill you can have

• the first greatest is being able to
troubleshoot problems with deductive
logic, usually known as “debugging”

protip

47

• nine times out of ten, what you want to do
has already been done

• and it’s covered in some documentation
somewhere...

• google it.

48

<?php

function addition($first, $second) {
return $first + $second;

}

echo addition(4, 10);

?>

congrats, a function that replicates existing functionality
(don’t ever do that, really)

49

don’t be afraid

• people get scared when it comes to ()s
and { }s and []s and whatnot

• don’t be scared, it’s just separating parts of
the script so the computer can understand
it better

• could be worse, could be LISP.

50

(defun factorial (n)
 (if (<= n 1)
 1
 (* n (factorial (- n 1)))))

oh jeez, the parentheses!!

gonna give me a heart attack.

51

anyway...

• that’s expressions, data types, variables,
functions, reference docs...

• now for some control

52

if, else

<?php

if (4 + 10 > 13) {
echo “14 is definitely greater than 13”;

} else {
echo “you will never see this.”;

}

?>

53

operators!

• >, <, <=, =>

• greater than, less than, etc

• == and !=

• if the same, if NOT the same

• NOT a single = this isn’t math

• use DOUBLE == to signify “if the same”

54

<?php

$variable = true;

if ($variable == true) {
echo “weee!”;

}

if ($variable >= 1) {
echo “weeeee!”;

}

if ($variable) {
echo “weeeeeee!”;

}

?>

55

more than one

• if you want to evaluate more than one
condition in an IF statement...

• use || and &&

• || means “or”

• && means “and”

56

<?php

$variable = 10;

if ($variable > 5 && $variable < 15) {
echo “you’ll see this.”;

}

if ($variable == 10 || $variable == 11) {
echo “you’ll also see this.”;

}

?>

57

for

<?php

for ($i = 0; $i < 10; $i++) {
echo “loop iteration $i \n”;

}

?>

58

($i = 0; $i < 10; $i++)

• how to start the loop!

• a variable, $i, with a value of 0

59

($i = 0; $i < 10; $i++)

• as long as this is going on, keep looping.

• when this is false, stop looping.

• so...

• as long as $i is less than 10, keep going.

60

($i = 0; $i < 10; $i++)

• what to do at the end of each iteration

• it does everything between the { }, and then
this

• so every time, increment $i by one

• (that’s what ++ does, it’s an operator)

61

foreach

<?php

$fruits = array(“apple”, “orange”);

foreach ($fruits as $fruit) {
echo ‘FRUIT: ’.$fruit.’
’;

}

?>

62

• foreach takes an array

• goes through everything inside of it

• one at a time

63

while

<?php

$variable = 5;

while ($variable < 10) {
echo $variable;
$variable++;

}

?>

64

• while keeps doing whatever is in the block

• the “block” is denoted by the curly braces
{ }

• while the condition is still true

• be careful, you can accidentally make
something loop forever

• and that’s not cool.

65

• about PHP anyway

• the rest is just... coding. a lot.

• reading documentation, learning functions.

that’s all i’m gonna teach you

66

anyway, a MySQL primer

• MySQL has databases

• each database can have tables

• each table has columns

• each table has rows with info for those
columns

• each table typically has an index

67

• typically you want a database for each app

• or a database for info to be used between
apps

• common idea: “users” might have its own
database if it’s gonna be shared,

• or you have a “users” table for each thing
you build

68

• a basic database is a lot like an excel spreadsheet

• (and by that i mean gross)

69

first_name last_name email id

cyle gage lol@whatever.c
om

1

frankie frain frankie@whatev
er.com

2

the “users” table inside a “cool_app” database

70

mailto:lol@whatever.com
mailto:lol@whatever.com
mailto:lol@whatever.com
mailto:lol@whatever.com
mailto:frankie@whatever.com
mailto:frankie@whatever.com
mailto:frankie@whatever.com
mailto:frankie@whatever.com

• an index helps distinguish unique rows

• columns separate data

• i mean, yeah, it’s a spreadsheet, pretty much

• it has data types just like PHP

• strings, numbers, etc

• used to define columns

71

• getting to that data!

• oh jeepers

SQL

SELECT * FROM users WHERE id=1;

72

SELECT * FROM users WHERE id=1;

• SQL is made up of KEYWORDS

• SELECT means.... select

• there are other words to use, like

• UPDATE and DELETE and INSERT

73

SELECT * FROM users WHERE id=1;

• the asterisk means return all columns

• here, you could tell it to just return specific
columns, if you wanted

74

SELECT * FROM users WHERE id=1;

• from... what table?

• oh, yeah, the users table

75

SELECT * FROM users WHERE id=1;

• where... the following condition(s) are met

• so, where the id column equals one

76

SELECT * FROM users WHERE id=1;

• DON’T FORGET THAT SEMICOLON!

• this is a running theme

• however, you really only need this if you are
inside the MySQL shell

77

a practical example

<?php

$mysql = new mysqli(‘localhost’, ‘user’, ‘password’, ‘db_name’);

$get_users = $mysql->query(“SELECT * FROM users”);

while ($row = $get_users->fetch_array()) {
echo “a row was returned!”;
print_r($row);

}

?>

78

• PHP connects to the database

• then PHP queries the database

• then PHP does something with each row
that returns

79

more SQL

INSERT INTO users (first_name, last_name)
VALUES (‘george’, ‘takei’);

DELETE FROM users WHERE id=1;

UPDATE users SET name=‘tom’ WHERE id=1;

80

MySQL admin

• direct via the shell on the server

• or phpMyAdmin

81

easy projects

• a Twitter clone

• a blog, or forum

• really... clone what’s already out there

82

a note about PHP

• PHP is not a good language

• it is not elegant, it is not advanced

• but it’s used everywhere

• and it can do a lot

• it’s a good start

• ...but at least it’s not java.

83

things to be concerned about

• web standards

• adhere to them

• nobody should care about IE6

• common best practices

• jQuery, MVC, clean code, commenting

• getting the process out of the way

• so you can get to the developing part

84

things to read up on
• regular expressions

• node.js (server-side javascript)

• NoSQL (MongoDB, Redis)

• other “web” languages!

• Ruby, Python

• non “web” languages!

• C, Obj-C, Erlang, Scala

85

things to take away
from this

• try everything. learn stuff.

• ultimately, you’re writing for a computer.

• learn how to read documentation.

86

development tools

• All-in-ones:

• Coda, Aptana, Espresso, Eclipse

• Text editors (with code in mind)

• TextMate, Kod, TextWrangler

• File transferring:

• FileZilla, Cyberduck

87

build something,
do something,

learn

88

bonus time?

• Apache config demo

• lighttpd demo ?

• mongodb demo ?

89

more learning

• http://arepository.com/of/learning/

• email me

• cyle_gage@emerson.edu

90

http://arepository.com/of/learning/
http://arepository.com/of/learning/
mailto:cyle_gage@emerson.edu
mailto:cyle_gage@emerson.edu

